The full article is accessible to AMA members and paid subscribers. Login to read more or purchase a subscription now.
Please note: institutional and Research4Life access to the MJA is now provided through Wiley Online Library.
- 1 Monash Institute of Medical Engineering, Monash University, Melbourne, VIC
- 2 Department of Neurosurgery, Alfred Hospital, Melbourne, VIC
- 3 Electrical and Computer Systems Engineering, University of Melbourne, Melbourne, VIC
Correspondence: j.rosenfeld@alfred.org.au
Competing interests:
No relevant disclosures.
- 1. Collinger JL, Kryger MA, Barbara R, et al. Collaborative approach in the development of high-performance brain-computer interfaces for a neuroprosthetic arm: translation from animal models to human control. Clin Transl Sci 2014; 7: 52-59.
- 2. Lewis PM, Ackland HM, Lowery AJ, Rosenfeld JV. Restoration of vision in blind individuals using bionic devices: a review with a focus on cortical visual prostheses. Brain Res 2015; 1595: 51-73.
- 3. Lewis PM, Rosenfeld JV. Electrical stimulation of the brain and the development of cortical visual prostheses: an historical perspective. Brain Res 2016; 1630: 208-224.
- 4. Brindley GS, Lewin WS. The sensations produced by electrical stimulation of the visual cortex. J Physiol 1968; 196: 479-493.
- 5. Mudry A, Mills M. The early history of the cochlear implant: a retrospective. JAMA Otolaryngol Head Neck Surg 2013; 139: 446-453.
- 6. Colletti L, Shannon R, Colletti V. Auditory brainstem implants for neurofibromatosis type 2. Curr Opin Otolaryngol Head Neck Surg 2012; 20: 353-357.
- 7. Miranda RA, Casebeer WD, Hein AM, et al. DARPA-funded efforts in the development of novel brain-computer interface technologies. J Neurosci Methods 2015; 244: 52-67.
- 8. Waldert S, Pistohl T, Braun C, et al. A review on directional information in neural signals for brain-machine interfaces. J Physiol Paris 2009; 103: 244-254.
- 9. Mitzdorf U. Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiol Rev 1985; 65: 37-100.
- 10. Lewis PM, Thomson RH, Rosenfeld JV, Fitzgerald PB. Brain neuromodulation techniques: a review. Neuroscientist 2016; 22: 406-421.
- 11. Vansteensel MJ, Pels EG, Bleichner MG, et al. Fully implanted brain–computer interface in a locked-in patient with ALS. N Engl J Med 2016; 375: 2060-2066.
- 12. Su Y, Routhu S, Moon KS, et al. A wireless 32-channel implantable bidirectional brain machine interface. Sensors (Basel) 2016; 16: pii: E1582.
- 13. Rajangam S, Tseng PH, Yin A, et al. Wireless cortical brain-machine interface for whole-body navigation in primates. Sci Rep 2016; 6: 22170.
- 14. Carmena JM, Lebedev MA, Crist RE, et al. Learning to control a brain-machine interface for reaching and grasping by primates. PLoS Biol 2003; 1(2): E42.
- 15. Hochberg LR, Serruya MD, Friehs GM, et al. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 2006; 442: 164-171.
- 16. Kim SP, Simeral JD, Hochberg LR, et al. Neural control of computer cursor velocity by decoding motor cortical spiking activity in humans with tetraplegia. J Neural Eng 2008; 5: 455-476.
- 17. Gilja V, Nuyujukian P, Chestek CA, et al. A high-performance neural prosthesis enabled by control algorithm design. Nat Neurosci 2012; 15: 1752-1757.
- 18. Orsborn AL, Moorman HG, Overduin SA, et al. Closed-loop decoder adaptation shapes neural plasticity for skillful neuroprosthetic control. Neuron 2014; 82: 1380-1393.
- 19. Collinger JL, Wodlinger B, Downey JE, et al. High-performance neuroprosthetic control by an individual with tetraplegia. Lancet 2013; 381: 557-564.
- 20. Hochberg LR, Bacher D, Jarosiewicz B, et al. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 2012; 485: 372-375.
- 21. Putrino D, Wong YT, Weiss A, et al. A training platform for many-dimensional prosthetic devices using a virtual reality environment. J Neurosci Methods 2015; 244: 68-77.
- 22. Santello M, Flanders M, Soechting JF. Postural hand synergies for tool use. J Neurosci 1998; 18: 10105-10115.
- 23. Aflalo T, Kellis S, Klaes C, et al. Decoding motor imagery from the posterior parietal cortex of a tetraplegic human. Science 2015; 348: 906-910.
- 24. Bouton CE, Shaikhouni A, Annetta NV, et al. Restoring cortical control of functional movement in a human with quadriplegia. Nature 2016; 533: 247-250.
- 25. Capogrosso M, Milekovic T, Borton D, et al. A brain-spine interface alleviating gait deficits after spinal cord injury in primates. Nature 2016; 539: 284-288.
- 26. Chestek CA, Gilja V, Nuyujukian P, et al. Long-term stability of neural prosthetic control signals from silicon cortical arrays in rhesus macaque motor cortex. J Neural Eng 2011; 8: 045005.
- 27. Oxley TJ, Opie NL, John SE, et al. Minimally invasive endovascular stent-electrode array for high-fidelity, chronic recordings of cortical neural activity. Nat Biotechnol 2016; 34: 320-327.
- 28. Lopez-Larraz E, Trincado-Alonso F, Rajasekaran V, et al. Control of an ambulatory exoskeleton with a brain-machine interface for spinal cord injury gait rehabilitation. Front Neurosci 2016; 10: 359.
- 29. O’Doherty JE, Lebedev MA, Ifft PJ, et al. Active tactile exploration using a brain–machine–brain interface. Nature 2011; 479: 228-231.
- 30. Zhang F, Aravanis AM, Adamantidis A, et al. Circuit-breakers: optical technologies for probing neural signals and systems. Nat Rev Neurosci 2007; 8: 577-581.
- 31. Clemente F, D’Alonzo M, Controzzi M, et al. Non-invasive, temporally discrete feedback of object contact and release improves grasp control of closed-loop myoelectric transradial prostheses. IEEE Trans Neural Syst Rehabil Eng 2016; 24: 1314-1322.
- 32. Flesher SN, Collinger JL, Foldes ST, et al. Intracortical microstimulation of human somatosensory cortex. Sci Transl Med 2016; 8: 361ra141.
- 33. Donati AR, Shokur S, Morya E, et al. Long-term training with a brain-machine interface-based gait protocol induces partial neurological recovery in paraplegic patients. Sci Rep 2016; 6: 30383.
- 34. Lewis PM, Ayton LN, Guymer RH, et al. Advances in implantable bionic devices for blindness: a review. ANZ J Surg 2016; 86: 654-659.
- 35. Pezaris JS, Eskandar EN. Getting signals into the brain: visual prosthetics through thalamic microstimulation. Neurosurg Focus 2009; 27: E6.
- 36. Ponce FA, Asaad WF, Foote KD, et al. Bilateral deep brain stimulation of the fornix for Alzheimer's disease: surgical safety in the ADvance trial. J Neurosurg 2016; 125: 75-84.
- 37. Deadwyler SA, Berger TW, Sweatt AJ, et al. Donor/recipient enhancement of memory in rat hippocampus. Front Syst Neurosci 2013; 7: 120.
- 38. Berger TW, Hampson RE, Song D, et al. A cortical neural prosthesis for restoring and enhancing memory. J Neural Eng 2011; 8: 046017.
- 39. Hampson RE, Gerhardt GA, Marmarelis V, et al. Facilitation and restoration of cognitive function in primate prefrontal cortex by a neuroprosthesis that utilizes minicolumn-specific neural firing. J Neural Eng 2012; 9: 056012.
- 40. Strickland E. New startup aims to commercialize a brain prosthetic to improve memory. IEEE Spectrum 2016; 16 Aug. http://spectrum.ieee.org/the-human-os/biomedical/bionics/new-startup-aims-to-commercialize-a-brain-prosthetic-to-improve-memory (accessed Jan 2017).
- 41. Schulze-Bonhage A. Brain stimulation as a neuromodulatory epilepsy therapy. Seizure 2017; 44: 169-175.
- 42. Freestone DR, Karoly PJ, Peterson AD, et al. Seizure prediction: science fiction or soon to become reality? Curr Neurol Neurosci Rep 2015; 15: 73.
- 43. Ludvig N, Tang HM, Baptiste SL, et al. Long-term behavioral, electrophysiological, and neurochemical monitoring of the safety of an experimental antiepileptic implant, the muscimol-delivering Subdural Pharmacotherapy Device in monkeys. J Neurosurg 2012; 117: 162-175.
- 44. Ludvig N, Medveczky G, Rizzolo R, et al. An implantable triple-function device for local drug delivery, cerebrospinal fluid removal and EEG recording in the cranial subdural/subarachnoid space of primates. J Neurosci Methods 2012; 203: 275-283.
- 45. Rowland NC, Sammartino F, Lozano AM. Advances in surgery for movement disorders. Mov Disord 2017; 32: 5-10.
- 46. Kuhn AA, Volkmann J. Innovations in deep brain stimulation methodology. Mov Disord 2017; 32: 11-19.
- 47. Hughes MA. Engineering brain-computer interfaces: past, present and future. J Neurosurg Sci 2014; 58: 117-123.
- 48. Schouenborg J. Biocompatible multichannel electrodes for long-term neurophysiological studies and clinical therapy–novel concepts and design. Prog Brain Res 2011; 194: 61-70.
- 49. Hong G, Fu TM, Zhou T, et al. Syringe injectable electronics: precise targeted delivery with quantitative input/output connectivity. Nano Lett 2015; 15: 6979-6984.
- 50. Kim TI, McCall JG, Jung YH, et al. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 2013; 340: 211-216.
- 51. Guduru R, Liang P, Hong J, et al. Magnetoelectric 'spin' on stimulating the brain. Nanomedicine (Lond) 2015; 10: 2051-2061.
- 52. Mandavilli A. Actions speak louder than images. Nature 2006; 444: 664-665.
- 53. Ovadia D, Bottini G. Neuroethical implications of deep brain stimulation in degenerative disorders. Curr Opin Neurol 2015; 28: 598-603.
- 54. Wartolowska K, Judge A, Hopewell S, et al. Use of placebo controls in the evaluation of surgery: systematic review. BMJ 2014; 348: g3253.
- 55. Katsnelson A. Experimental therapies for Parkinson's disease: why fake it? Nature 2011; 476: 142-144.
- 56. Swift T, Huxtable R. The ethics of sham surgery in Parkinson's disease: back to the future? Bioethics 2013; 27: 175-185.
- 57. Harris I. Surgery, the ultimate placebo. 1st ed. Sydney: UNSW Press NewSouth, 2016.
- 58. Freed CR, Greene PE, Breeze RE, et al. Transplantation of embryonic dopamine neurons for severe Parkinson's disease. N Engl J Med 2001; 344: 710-719.
- 59. LeWitt PA, Rezai AR, Leehey MA, et al. AAV2-GAD gene therapy for advanced Parkinson's disease: a double-blind, sham-surgery controlled, randomised trial. Lancet Neurol 2011; 10: 309-319.
- 60. Gross RE, Watts RL, Hauser RA, et al. Intrastriatal transplantation of microcarrier-bound human retinal pigment epithelial cells versus sham surgery in patients with advanced Parkinson's disease: a double-blind, randomised, controlled trial. Lancet Neurol 2011; 10: 509-519.
- 61. Lane FJ, Huyck M, Troyk P, et al. Responses of potential users to the intracortical visual prosthesis: final themes from the analysis of focus group data. Disabil Rehabil Assist Technol 2012; 7: 304-313.
Online responses are no longer available. Please refer to our instructions for authors page for more information.
Summary