Chronic hepatitis B (HBV) and hepatitis C (HCV) infections cause significant morbidity and mortality through sequelae such as liver fibrosis, cirrhosis and hepatocellular carcinoma. Together, they are the most common indication for adult liver transplantation in Australia.1 Antiviral therapy is the standard care for adult patients with HCV infection, preventing progression to end-stage disease, and is used in patients with HBV who meet specific criteria.2 Treatment of children can be as effective as in adults, particularly for HCV.3 However, antiviral therapy for HCV is not currently approved in the Australian Pharmaceutical Benefits Scheme for those under 18 years of age, thus restricting access to the medications. Chronic HBV or HCV infection in children is usually asymptomatic and may remain undetected, although significant liver disease can occur.4,5
Databases of paediatric gastroenterology, hepatology, infectious diseases and refugee clinics in NSW were searched, and charts of children (aged < 18 years) with HBV or HCV infection during 2000–2007 were reviewed. Patients were defined as having chronic HBV if they were surface antigen (HBsAg)-positive on two occasions 6 months apart. HBV e-antigen (eAg) and e-antibody (eAb) status at referral were recorded. HCV infection was defined as being anti-HCV-positive and RNA-positive on polymerase chain reaction (PCR) testing. HBV and HCV viral loads (quantitative PCR), HCV genotype and liver function results at presentation were recorded. Demographic details (sex, age at referral, country of birth) were also recorded, as well as the likely mode of infection determined from the history provided, results of liver biopsies, and details of antiviral therapy. Likely mode of infection was deemed to be vertical if the patient’s mother had a clear history of infection, horizontal if she was known not to be infected, or unclear if this information was not recorded. For HBV cases, any record of neonatal prophylaxis with hepatitis B immunoglobulin and vaccination was noted.
During the 8-year period, 79 children with chronic HBV infection and 29 children with chronic HCV infection were referred to paediatric gastroenterology, hepatology, infectious diseases and refugee clinics in NSW.
Characteristics of the 79 patients with HBV infection are summarised in Box 1. Fifty-one patients were male, and the mean age at referral was 9.1 years (range, 1–17 years). Most were refugees born in Africa or migrants from Asia. Half of the patients born in Australia or New Zealand had parents who were both born overseas. Vertical transmission (38/79) was more common than horizontal transmission (10/79), but the mode of transmission could not be determined for 31 patients. Seven patients developed HBV infection despite a history of receiving neonatal vaccination and hepatitis B immunoglobulin at birth. Apart from hepatomegaly in one patient and splenomegaly in another, all other patients had normal results of a gastroenterological examination.
There was only one patient for whom eAg/eAb status was not known. Most (56/79) were in the immune tolerant eAg-positive/eAb-negative phase of infection (Box 1). Most of these patients had high viral loads (median, 1.7 × 106 IU/mL), with either normal or slightly raised alanine aminotransferase (ALT) levels. Eighteen patients had undergone eAb seroconversion and had cleared eAg. These patients had lower viral loads and ALT levels, consistent with suppressed viral replication (data not shown). Four patients were positive for both eAg and eAb at presentation. One patient out of the 56 who were initially eAg-positive/eAb-negative had spontaneous seroconversion and became eAg-negative with a low viral load during follow-up. No patients were eAg-negative/eAb-positive with a high viral load.
Liver biopsy was performed on eight patients during the study period because of persistent elevation in transaminase levels, to assess for the degree of inflammation and fibrosis, and for consideration of possible therapy. Two patients had bridging fibrosis evident on biopsy, but none had cirrhosis. Three had mild and two had moderate necroinflammatory activity (by Ishak grading).6
Characteristics of the 29 patients with HCV infection are summarised in Box 2. Again, there was a male predominance, but most patients were born in Australia. The mean age at referral was 7.8 years (range, 1–14 years). All patients were asymptomatic and none had clinical signs of chronic liver disease at referral.
Notifications to NSW Health from 2000 to 2007 of children with HBV and HCV infection are shown in Box 3. During this period, there were 930 HBV notifications for children aged < 18 years and 777 HCV notifications in children aged between 18 months and 18 years. While the 15–17-years age group had the most notifications, 388 children aged less than 15 years with HBV and 127 children aged between 18 months and 15 years with HCV were identified during the 8-year period.
Our enquiries found that there are no coordinated services for children with chronic viral hepatitis in any Australian state or territory. Children with chronic HBV do not receive antiviral therapy routinely. Children with chronic HCV are not routinely treated in any state except Victoria, where a small number of patients have accessed medication from the manufacturer on a compassionate basis (W Hardikar, Head of Hepatology, Royal Children’s Hospital, Melbourne, personal communication).
We found that most children referred to tertiary children’s hospitals in NSW with chronic HBV infection were born overseas, while most of those with HCV are Australian-born, often to mothers with a history of injecting drug use.
Most of the children with HBV infection were either refugees or migrants, or children of refugees or migrants. As refugees are often screened after arrival in Australia, there will be an ascertainment bias in this group. The mode of transmission was unclear for almost 40% of children. Almost half of the Australian-born children had apparently received neonatal prophylaxis with both vaccination and immunoglobulin. These measures have an efficacy of between 70% and 100% in preventing vertical transmission from an eAg-positive mother, depending on her viral load.7 Our patients in whom this apparently failed underline the need for close follow-up of infants who receive prophylaxis. While most had biochemical evidence of hepatitis, advanced liver disease was uncommon and very few had received treatment.
Age at infection is an important factor in the natural history — children infected vertically or within the first 5 years of life have higher rates of chronic infection (25%–30%) than those infected later in life (5%–10%).8 Similarly, eAg seroconversion rates vary from 2%–5% per year in young, vertically infected children9 to up to 70%–80% of horizontally infected older children by age 20.10 The dominant mode of transmission to children varies by geographical location, with higher rates of horizontal infection in Africa than in eastern Asia, where vertical transmission is most common.11 These differences may be explained by different HBV genotypes.12 The mix of geographical origins and differing modes of infection in our group of patients may thus result in varied natural histories.
Cirrhosis occurs in around 20% of adults with chronic HBV infection over a 20-year period13 and is a precursor to hepatocellular carcinoma. About 4% of horizontally acquired HBV infections in childhood progressed to cirrhosis in one study spanning 29 years,14 although half of these patients developed hepatocellular carcinoma. In Taiwan, where vertical transmission is common, the annual incidence of cirrhosis in young eAg-positive adults was found to be 2.4%.15
Development of progressive liver fibrosis is generally associated with prolonged elevation of ALT levels,16 but can develop in those with normal ALT levels.5 Those who have seroconverted can also experience reactivation with either eAg-positive or eAg-negative chronic hepatitis, resuming the risks of increased infectivity and progression of liver disease.17 These features of HBV infection mandate long-term follow-up for disease progression, with biopsies and therapy if necessary.
Treatment of HBV in children is focused on those who are shown to be developing significant, irreversible liver damage on biopsy.3 The decision to treat is difficult because of uncertainty about the required length of therapy — when it is ceased, viral loads often rebound. Also, the higher spontaneous eAg seroconversion rate in children, the risk of resistant mutants arising, side effects of medications, and the relatively long lead time from infection to the development of serious liver disease make treatment decisions complicated. Based on paediatric trials, the best evidence for efficacy exists for interferon α-2b,18 lamivudine,19 and, more recently, adefovir.20 However, there is also evidence that there may be less response to antiviral therapy in younger children.20
In contrast to the patients with HBV, those with HCV infection were mostly Australian-born and acquired infection vertically, typically from mothers with a history of injecting drug use. Few had evidence of significant liver disease, although about half of the patients who had HCV genotyping had genotypes 2 or 3, which have a “cure rate” of greater than 80% with antiviral therapy.3
The natural history of paediatric HCV infection is still being elucidated. Around 10%–20% of adults progress to cirrhosis within 20 years of infection.21 One paediatric cohort study suggests that 8% will clear HCV spontaneously within 10 years, and 1.8% will progress to cirrhosis over the same period.22 Clearance was more likely with vertically infected children and those with genotype 3, while cirrhosis was more likely with genotype 1 or persistently elevated ALT levels.22 Rates of histological bridging fibrosis (a precursor to cirrhosis) vary from 4% to 22% in studies, probably related to different genotypes and modes of acquisition.4,23 It is likely that many of these patients will progress to cirrhosis in adulthood; however, decompensated cirrhosis has been described in children.22
The standard first-line treatment for HCV is pegylated interferon α combined with ribavirin, which achieves a sustained virological response (undetectable HCV RNA 24 weeks after stopping therapy) in over 40% of adults with genotype 1 and around 80% with genotypes 2 or 3.24 Similar results have been achieved in paediatric trials.25 Treatment of our group of patients could eliminate chronic HCV infection in a significant proportion, sparing them considerable morbidity, and possibly mortality, later in life. There would also be a health expenditure saving, as well as psychosocial benefits for the individual who would no longer be burdened by the social stigma of the disease. To date, none of our patients have been treated because of a lack of access to medication and insufficient clinic resources to enable treatment.
We found a major discrepancy between the number of children seen in tertiary referral centres and the number of cases notified to NSW public health units for both HBV and HCV, suggesting many patients are not receiving adequate medical follow-up. The referred children with HBV and HCV account for only 8.4% and 3.7%, respectively, of all notifications in children aged < 18 years during the study period. Even when 15–17-year-olds (who may imminently transition to adult services or be followed by programs within NSW Justice Health) are excluded, referred patients account for only 20.1% and 22.8% of notifications for HBV and HCV, respectively. In addition, without a concerted program to screen at-risk children, there are likely to be more infected children who have not even been tested.
Received 16 October 2008, accepted 4 March 2009
Abstract
Objective: To characterise epidemiological, clinical and laboratory features of children in New South Wales with chronic hepatitis B (HBV) or C (HCV) infections.
Design and setting: Retrospective record review of epidemiological, clinical, laboratory, liver biopsy and treatment data for children (aged < 18 years) referred to tertiary referral paediatric and refugee clinics in NSW with chronic HBV or HCV during 2000–2007; and comparison with NSW Health notification data for the same period.
Main outcome measures: Numbers and characteristics of referred children with HBV and HCV, and notifications to NSW Health.
Results: During 2000–2007, 79 children with chronic HBV and 29 with HCV infection were referred to specialist clinics, while 930 children with HBV and 777 with HCV infection were reported to NSW Health. Most of the referred children with HBV were born overseas, while most with HCV were born in Australia to mothers with a history of intravenous drug use. Of the 79 HBV-infected children, 56 were e-antigen positive. Most HCV-infected children (23/29) had alanine aminotransferase levels ≤ 2 times the upper limit of normal, and more than half of those who had genotype determined had type 2 or 3. Fibrosis was evident in liver biopsies performed for both HBV and HCV.
Conclusions: Although advanced liver disease was uncommon in children referred with HBV or HCV infection, a large number of infected children in NSW were not referred for specialist medical care, indicating that opportunities to intervene early in the natural history of these infections, particularly HCV, are being missed.