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Using conversant artificial intelligence to 
improve diagnostic reasoning: ready for prime 
time?

An estimated 10–15% of diagnoses are incorrect 
and serious patient harm or death from 
misdiagnosis affects one in 200 patients 

admitted to hospital.1 Up to 80% of diagnostic errors 
are potentially preventable and are mostly due to 
faults in clinician reasoning related to the gathering 
of relevant background information and integrating 
symptoms, signs and situational factors in generating 
an appropriate differential diagnosis.2

Experience with digital symptom checkers,3 electronic 
differential diagnosis generators4 and electronic 
medical record (EMR) screening for missed diagnoses5 
has shown minimal impact, in part due to poor 
integration into clinical workflows and negative 
clinician perceptions.6 In this perspective article, we 
consider how artificial intelligence (AI) may assist 
clinicians in diagnosing complex cases at the bedside or 
in the clinic.

Advent of AI- assisted diagnosis

Machine learning prediction models applied to 
imaging data have shown promise in diagnosing 
pneumothoraces from chest radiographs,7 diabetic 
retinopathy from fundal images8 or skin cancer from 
dermatoscopic photographs.9 Randomised trials 
confirm superior AI- assisted clinician performance in 
diagnosing diabetic retinopathy,10 detecting adenomas 
on colonoscopy,11 and identifying impaired cardiac 
function from electrocardiographs.12

To date, most diagnostic machine learning models input 
images or structured data from EMRs or investigations 
and generate single disease probabilities or disease 
present/not present predictions. Moving upstream and 
using machine learning tools to assist bedside clinicians 
in more complex reasoning tasks requires integration 
of relevant clinical information (history from medical 
records, presenting complaint and findings from 
physical examination) and formulation of a differential 
diagnosis containing the correct diagnosis.

To achieve this aim, AI tools should work in ways that 
align with how clinicians reason in terms of System 
1 (intuitive) and System 2 (analytical) thinking (two 
modes of cognitive processing introduced by Daniel 
Kahneman in Thinking, fast and slow).13 For common 
clinical presentations, such as crushing central chest 
pain or sudden onset hemiplegia, intuitive reasoning 
often suffices in arriving quickly at the correct 
diagnosis. For more complex and undifferentiated 
cases, such as fever, weight loss and generalised 
bruising in an older patient, analytical reasoning 
is required. This is where AI may help clinicians 
generate and reason through a differential diagnosis, 
detailing the key pros and cons of each diagnosis from 
the clinician or AI.

Using ChatGPT and related technologies to assist 
with diagnostic reasoning

Large language models (LLMs), such as the general 
purpose generative pretrained transformer (GPT) 
series of models, embodied in the chatbot ChatGPT, 
use natural language processing to learn and generate 
human- like text content in response to text- based 
prompts (Box). Studies of LLM- assisted diagnostic 
reasoning have used GPT- 3.5 or GPT- 4. Applied to 
EMRs and other source documents, these LLMs 
can generate concise summaries of patients’ active 
diagnoses and past medical history (thus saving 
interview time and effort),14,15 suggest differential 
diagnoses surpassing previous differential diagnosis 
generators,16,17 detect diagnostic uncertainty in 
clinical documentation18 and solve complex diagnostic 
problems.19,20 Furthermore, LLMs can perform 
multistep reasoning and provide rationales for the 
links between each step, known as chain- of- thought 
reasoning.21 LLMs can thereby function as conversant 
sounding boards against which clinicians iteratively 
test their diagnostic reasoning.22 Simply providing 
a list of differential diagnosis, with no rationales 
or probability rankings, has no effect on clinician 
diagnostic accuracy.23

Traditional task- specific machine learning prediction 
models generate a single set of diagnostic predictions 
in response to a fixed, one- off input of pre- processed 
data with predictions pre- analysed by domain experts. 
These predictions rely on extracting and presenting, as 
explanation, key features learnt from being trained on 
a circumscribed, domain- specific dataset.24 In contrast, 
LLMs are pretrained and fine- tuned on a large, 
heterogenous dataset of clinical knowledge, and can 
discern complex relationships and variations within 
the data, beyond the limits of human cognition. In 
response to text prompts relating to a diagnostic case, 
LLMs can generate a list of plausible alternatives, and, 
when provided with further information (eg, revised 
history or physical signs, clinician insight, simple 
bedside test results), they can re- evaluate and re- 
order their differential diagnosis. The more narrative 
text a LLM has as input, rather than only key clinical 
features, the better its diagnostic performance.25 The 
generated diagnostic rationales, highlighting relevant 
patient data, provide a reasoning path towards the 
final diagnosis.26 This “reasoning aware” approach, 
using chain- of- thought, prompt- based learning, allows 
the LLM to use rationales as part of its input, further 
improving the diagnostic outputs and even correcting 
its own misdiagnoses arising, in part, from inaccurate 
training data.27

Such evaluative LLMs could provide clinicians with 
a second opinion in real time, share uncertainty, deal 
with limited or noisy data, and defer appropriately to 
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clinician expertise and judgement.28 Studies show the 
accuracy of clinicians’ diagnoses across multiple cases 
improves markedly if the diagnoses are discussed with 
one other colleague, more so with two or more.29,30 
The benefit of this collective intelligence can feasibly 
be replicated using LLMs. This “machine- in- the- 
loop” approach better leverages clinician expertise in 
hypothesis- driven decision making, mitigates over-  
and under- reliance on machine learning decision 
support, and builds clinician trust and control.31 This 
contrasts with the more conventional “human- in- 
the- loop” approach where the role of the clinician is 
relegated to accepting or rejecting AI outputs that are 
unaccompanied by any reasoning chain, leading to 
clinician resistance to and disuse of LLMs.22

Experimental studies of LLMs in diagnostic 
reasoning

ChatGPT does not appear to significantly enhance 
the differential diagnosis of clinicians for common 
clinical presentations.32- 34 In contrast, in a study 
comparing GPT- 4 with a simulated population of 
10 000 online medical- journal- reading clinicians in 
solving 38 challenging cases, the March 2023 version 
of GPT- 4 correctly diagnosed a mean of 22 cases (57%) 
versus 14 cases (36%) for the clinicians.35 In a vignette 
study comparing GPT- 4 with 553 clinicians, GPT- 4 
more accurately estimated pre- test probability of the 
disease in all five cases, and post- test probability 
in all cases after a negative test result, and in four 
cases after a positive test.36 In a randomised study 
of 20 experienced clinicians diagnosing 302 difficult 
real- world cases, those assigned to assistance from 
Med- PaLM- 2, an LLM trained on biomedical texts 
such as PubMed abstracts, compared with those 
assigned to more traditional decision support (search 
engines, online resources) generated higher quality 
differential diagnosis containing the correct diagnosis 
(top- 10 accuracy, 52% v 44%) and demonstrated 
higher accuracy for the final diagnosis (59% v 34%).37 
In a randomised crossover simulation study, 20 
standardised patients were subjected to text- based 
consultations with an LLM (Articulate Medical 
Intelligence Explorer) or face- to- face consultations with 
20 primary care clinicians across 149 clinical scenarios, 
with responses assessed by 23 specialists.38 The LLM 

showed significantly higher top- 10 diagnostic accuracy 
than clinicians (93% v 83%). Both specialists and 
patients rated the LLM superior in communication, 
reasoning and empathy.

But LLMs have limitations. ChatGPT- 3.5 demonstrated 
an 83% error rate when applied to 100 challenging 
paediatric cases, underscoring the need to avoid 
unrepresentative training datasets.39 In another 
study, the differential diagnosis created by GPT- 4 
across 18 standardised clinical vignettes were more 
likely to include diagnoses that stereotyped certain 
races, ethnicities and genders.40 ChatGPT is also often 
inaccurate when used by patients to self- diagnose 
and self- triage,41,42 suggesting research should, for 
the moment, remain focused on clinician- facing 
applications.

Future directions

Several innovations will likely move LLM- assisted 
diagnosis towards prime- time use. Biomedically 
trained LLMs, such as Med- PaLM- 2, augmented 
with real- time access to additional, up- to- date 
medical information, semantic knowledge graphs, 
reinforcement learning with human feedback 
and optimised prompt engineering, will develop 
accuracy superior to models such as GPT- 4 trained 
on internet data of variable quality.27,43 Multimodal 
LLMs are emerging that can process not only text 
but also numerical, image, video and audio data, 
further enhancing performance. For example, an LLM 
trained on both text and images (GPT- 4 with Vision 
version), when compared with human respondents 
across 934 cases from the New England Journal of 
Medicine Image Challenge and 69 clinicopathological 
conferences (New England Journal of Medicine), 
achieved an overall diagnostic accuracy of 61% versus 
49%, with longer, more informative captions increasing 
performance.44 Another study found a diagnostic LLM 
trained on multimodal data from real- world EMRs 
outperformed text- based models.45

But there are challenges. Studies of diagnostic LLMs 
have involved laboratory- based vignettes that may 
not represent usual clinical practice where diagnoses 
unfold temporally with recursive question- answering 
interactions involving clinicians and patients. 
Variations in patient populations, clinical settings 
and data quality may degrade model performance. 
Embedding cognitive bias mitigations into the design 
of LLM applications and their user interfaces, and 
implementing LLMs in ways that blend with clinician 
workflows are required.46 Randomised trials involving 
clinicians diagnosing acute clinical scenarios in real- 
world settings, with and without LLM assistance, are 
needed. Clinicians will still need to critically appraise 
the differential diagnosis and associated rationales in 
terms of their consistency with the clinical data, their 
correctness and level of relevant detail (ie, specificity), 
their usefulness in pointing towards the correct 
diagnosis, and their similarity to the way humans 
think.26 Clinicians will also have to validate LLM 
performance on local datasets, use prompts with LLMs 
correctly,47 and avoid over- reliance on model outputs. 
Regulatory approval and monitoring of LLM quality 

Brief overview of how large language models (LLMs) 
work

• LLMs are sequence- to- sequence learners. They create output 
by answering a prompt. Given this sequence of words (eg, a 
clinical vignette), LLMs generate a highly likely sequence of 
words that would occur after this, based on the training data.

• LLMs are trained using machine learning techniques, typically 
based on huge corpora of text. ChatGPT, for example, is trained 
on a large amount of publicly available internet data.

• Unlike humans, LLMs have no abstract or causal models of the 
world, and they operate only when prompted.

• Given these points, LLMs can give drastically wrong answers, 
make up information, and give very different answers to the 
same query posed twice.
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management systems will be required to preserve data 
privacy, ensure transparency and fairness, determine 
medical liability for harm and guarantee LLMs remain 
effective and safe over their life cycle.48 The Therapeutic 
Goods Administration of Australia has stated that 
LLM developers must understand and demonstrate 
the sources and quality of text inputs used to train and 
test the model, in addition to showing how the data 
are relevant and appropriate for use on Australian 
populations.49 Although LLM- assisted diagnosis is not 
yet ready for prime time use, it may not be far off.
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