

Supporting Information

Supplementary methods and results

This appendix was part of the submitted manuscript and has been peer reviewed. It is posted as supplied by the authors.

Appendix to: Wang X, Carcel C, Hsu B, et al. Differences in the pre-hospital management of women and men with stroke by emergency medical services in New South Wales. *Med J Aust* 2022; doi: 10.5694/mja2.51652.

Table 1. Clinical studies assessing sex differences in the use of emergency medical services

	Location	Design	Stroke	Arrival by ambu	lance	Study findings
			subtype	Women	Men	
Reeves et al, 2009 ¹	USA (national registry)	Consecutive cases from 1139 hospitals (Get With The Guidelines programme)	Ischaemic stroke	121278/201706 (60.1%)	103108/181612 (56.8%)	Women were more likely than men to use emergency medical services
Smith et al, 2010 ²	Corpus Christi, Texas, USA	Population-based study	Ischaemic stroke	281/597 (47%)	258/537 (48%)	Women were less likely than men to present to the hospital within 3 hours. But no sex differences in emergency medical services activation
Nagajara et al, 2012 ³	Michigan, USA	Retrospective charts review of 10 hospitals	Ischaemic stroke	202/320 (63.1%)	152/282 (53.9%)	Women were more likely than men to use emergency medical services
Chenaitia et al, 2013 ⁴	Marseille, France	Retrospective observational study of 3 hospitals	Ischaemic stroke or transient ischaemic attack	341/471 (72.4%)	319/460 (69.3%)	No sex differences in emergency medical services activation
Kuster et al, 2013 ⁵	São Paulo, Brazil	Prospective consecutive patients from 1 hospital	Ischaemic stroke	12/65 (18.5%)	17/100 (17%)	No sex differences in emergency medical services activation
Park et al, 2013 ⁶	Korea	Prospective observational study of 23 hospitals	Stroke	585/2830 (20.7%)	695/3805 (18.3%)	No sex differences in emergency medical services activation. But women were less likely than men to have an early hospital presentation
Price et al, 2013 ⁷	North East, England	Prospective consecutive patients from 12 hospitals	Ischaemic stroke	1077/1316 (81.8%)	925/1224 (75.6%)	No sex differences in emergency medical services activation
Gattringer et al, 2014 ⁸	Austria	Prospective consecutive patients from 35 hospitals	Ischaemic stroke or transient ischaemic attack	16338/22329 (73.2%)*	16227/24880 (65.2%)*	Women were more likely than men to use emergency medical services
Malek et al, 2014 ⁹	South Carolina, USA	A sample from 13 telemedicine center	Stroke	39/90 (43.3%)	55/107 (51.4%)	No sex differences in emergency medical services activation
Govindarajan et al, 2015 ¹⁰	California, USA	Cross-sectional observational study from 14 hospitals	Stroke	2093/4948 (42.3%)	1694/4264 (39.7%)	Women were less likely to be recognized as a stroke in the prehospital setting

	Location	Design	Stroke	Arrival by ambulance		Study findings
			subtype	Women	Men	
Mochari- Greenberger et al, 2015 ¹¹	USA	Consecutive admission to 1613 Get With The Guidelines–Stroke participating hospitals	Stroke	121719/200995 (60.6%)	112175/197804 (56.7%)	White women were most likely to use emergency medical services, Hispanic men were least likely to use emergency medical services
Song et al 2015 ¹²	Korea and Japan	Prospective consecutive patients from 2 hospitals	Ischaemic stroke	786	1180	No sex differences in the early presentation to the hospital
Madsen et al 2016 ¹³	Greater Cincinnati/Northern Kentucky, USA	Prospective consecutive patients from 15 hospitals	Ischaemic stroke	476/1097 (43%)	393/894 (44%)	Women were less likely than men to have an early hospital presentation
Park et al 2016 ¹⁴	Korea	Prospective consecutive patients from 23 hospitals	Ischaemic stroke	3039/8627 (35.2%)	3972/12153 (32.7%)	No sex differences in the time of presentation to the hospital
Yin et al 2016 ¹⁵	Hubei, China	Cross-sectional study of 66 hospitals	Ischaemic stroke	129/779 (16.6%)	192/1311 (14.6%)	No sex differences in emergency medical services activation
Anderson et al 2018 ¹⁶	Sweden	Retrospective observational study of 1 hospital	Stroke	225	229	No sex differences in emergency medical services activation
Bhaskar et al 2019 ¹⁷	Sydney, Australia	Population-based study	Stroke	1611	1926	No sex differences in the time in the time of presentation to the hospital
Dimitriou et al 2019 ¹⁸	Thessaloniki, Greece	Prospective observational study of 1 hospital	Ischaemic stroke	386	296	No sex differences in the time of presentation to the hospital

^{*}include ambulance and helicopter

We searched MEDLINE for papers published in English between Jan 1, 2018, and Dec 9, 2020 using the terms "cerebrovascular accident.mp. or exp Stroke/" AND ("exp emergency medical service communication systems/" OR "exp emergency medical dispatch/" OR "exp emergency medical dispatcher/" OR "exp emergency medical services")

For the papers prior to 2018, we extracted the data from Bushnell C et al 2018.¹⁹

Table 2. Variation of ambulance stroke management protocols

Protocol Year	Protocols advised	Other notes	Major change
2011	F2 (primary survey), C11	FAST assessment Treat associated conditions Urgent transport Aim to have patient in hospital within 3 hours of symptom onset	
2014	A2, C11	Generally same as above	a FAST assessment is required Blood sugar level 4-22mmol became part of notification criteria Early alert to ED
2015	A2, C11	Generally same as above	
2016	A2, C11	Generally same as above	
2018	A2, C11 and first time C11P appears.	C11P advises to go to the nearest hospital within 90minutes, in the order of acute thrombolytic unit, acute stroke unit, nearest ED (in other words, you can bypass the nearest ED if your thrombolytic unit is within 90mins)	Transport time for FAST positive and mandatory hyperacute stroke protocol is now 90mins Treat low blood sugar according to protocol M21 if needed

ED: emergency department; FAST: Facial drooping, Arm weakness, Speech difficulties, and Time

 ${\bf Table~3.~Baseline~characteristics~of~patients~admitted~with~a~diagnosis~of~stroke}$

	Total	Women	Men
Arrival by ambulance			
No	100874(49.9%)	46907(47.6%)	53967(52.1%)
Yes	101357(50.1%)	51692(52.4%)	49665(47.9%)
Age, mean (Standard Deviation)	73(14)	75(14.7)	71(13.7)
0-39	5433(2.7%)	2779(2.8%)	2654(2.6%)
40-69	66636(33.0%)	27231(27.6%)	39405(38.0%)
70+	130161(64.4%)	68589(69.6%)	61572(59.4%)
Country of birth			
Australia	140028(69.4%)	69799(70.9%)	70229(67.9%)
Other	61870(30.6%)	28641(29.1%)	33229(32.1%)
Marital status	, , ,	•	•
With partner	108254(53.5%)	39385(39.9%)	68869(66.5%)
Without partner	89422(44.2%)	56931(57.7%)	32491(31.4%)
Unknown	4555(2.3%)	2283(2.3%)	2272(2.2%)
Aboriginal or Torres Strait Islander	,	` ,	` '
Yes	3096(1.5%)	1609(1.6%)	1487(1.4%)
No	197423(97.7%)	96170(97.6%)	101253(97.7%)
Did not respond	1641(0.8%)	776(0.8%)	865(0.8%)
Region	, ,	` ,	•
Urban	139022(70.4%)	68504(71.0%)	70518(69.9%)
Regional	57651(29.2%)	27670(28.7%)	29981(29.7%)
Remote	808(0.4%)	358(0.4%)	450(0.5%)
Stroke subtype	, ,	` ,	•
Ischaemic stroke	62818(31.1%)	29237(29.7%)	33581(32.4%)
Intracerebral haemorrhage	15646(7.7%)	7611(7.7%)	8035(7.8%)
Subarachnoid haemorrhage	6495(3.2%)	3952(4.0%)	2543(2.5%)
Transient ischaemic stroke	70412(34.8%)	35766(36.3%)	34646(33.4%)
Occlusion and stenosis of prevertebral arteries	21223(10.5%)	9042(9.2%)	12181(11.8%)
Undetermined	25637(12.7%)	12991(13.2%)	12646(12.2%)

Table 4. Ambulance response and transport time for patients subsequently admitted to hospital with diagnosis of stroke, for 43308 patients with ambulance electronic medical records

	Unadjusted analyses			Multiple adjusted analyses*		
	Women	Men	Difference (95% CI)	Women	Men	Adjusted difference (95% CI)
Time between call and case complete (seconds), mean (95% CI)	5533 (5507.9-5558)	5544 (5518.8-5568.6)	-10.8 (-46.1 to 24.6)	5534 (5288.2-5580.7)	5438 (5291-5584.2)	-3.1 (-39.1 to 32.8)

CI = confidence interval.

^{*} Adjusted for age (continuous), marital status, country of birth, Indigenous status, region, year of stroke onset and stroke subtype.

 $\textbf{Table 5. Baseline characteristics, by source of information for patients admitted with a diagnosis of stroke \\$

	Source of information		
	Electronic medical record	Patient health care record	
Age, mean (Standard Deviation)	75.0(14.3)	75.8(13.5)	
0-39	973(2.3%)	1068(1.8%)	
40-69	12303(28.4%)	14866(25.6%)	
70+	30032(69.4%)	42114(72.6%)	
Sex			
Female	21795(50.3%)	29897(51.5%)	
Male	21513(49.7%)	28152(48.5%)	
Country of birth			
Australia	29810(69.0%)	39868(68.8%)	
Others	13384(31.0%)	18103(31.2%)	
Marital status	, ,	, ,	
With partner	22154(51.2%)	28123(48.5%)	
Without partner	20544(47.4%)	28544(49.2%)	
Unknown	610(1.4)	1382(2.4)	
Aboriginal or Torres Strait Islander	, ,	, ,	
Yes	826(1.9%)	721(1.2%)	
No	42224(97.5%)	56706(97.7%)	
Did not respond	253(0.6%)	600(1.0%)	
Region			
Urban	28955(68.3%)	41595(73.2%)	
Regional	13276(31.3%)	15034(26.5%)	
Remote	138(0.3%)	167(0.3%)	
Stroke subtype			
Ischaemic stroke	17444(40.3%)	21338(36.8%)	
Intracerebral haemorrhage	4788(11.1%)	6193(10.7%)	
Subarachnoid haemorrhage	2011(4.6%)	2332(4.0%)	
Transient ischaemic stroke	11753(27.1%)	16373(28.2%)	
Occlusion and stenosis of	2237(5.2%)	2844(4.9%)	
prevertebral arteries	,	, ,	
Not determined	5075(11.7%)	8969(15.5%)	

Table 6. Assessment by emergency medical services of patients subsequently admitted to hospital with principal diagnosis of stroke (patients with ambulance electronic medical records only)

Final assessment	Women	Men	Unadjusted analyses	Multiple adjusted analyses*	
			OR (95%CI)	OR (95%CI)	
Total number	21795	21513			
Acute coronary					
syndrome	100(0.5%)	146(0.7%)	0.67(0.52-0.87)	0.68(0.53-0.89)	
Acute myocardial					
infarction	15(0.1%)	18(0.1%)	0.82(0.41-1.63)	0.80(0.39-1.64)	
Acute pulmonary					
oedema	14(0.1%)	11(0.1%)	1.26(0.57-2.77)	1.12(0.49-2.56)	
Anxiety	118(0.5%)	46(0.2%)	2.54(1.81-3.57)	2.94(2.06-4.20)	
Arrhythmia	104(0.5%)	113(0.5%)	0.91(0.7-1.19)	0.90(0.68-1.18)	
Cardiac arrest	60(0.3%)	56(0.3%)	1.06(0.73-1.52)	0.85(0.58-1.25)	
Collapse	133(0.6%)	128(0.6%)	1.03(0.8-1.31)	0.96(0.74-1.23)	
Dizzy	544(2.5%)	676(3.1%)	0.79(0.7-0.88)	0.80(0.71-0.90)	
Emotional distress	20(0.1%)	8(0.0%)	2.47(1.09-5.61)	2.63(1.14-6.03)	
Faint	188(0.9%)	156(0.7%)	1.19(0.96-1.47)	1.09(0.87-1.36)	
Headache	738(3.4%)	529(2.5%)	1.39(1.24-1.56)	1.32(1.17-1.49)	
Hyperglycaemia	98(0.4%)	118(0.5%)	0.82(0.63-1.07)	0.88(0.67-1.15)	
Hypoglycaemia	36(0.2%)	56(0.3%)	0.63(0.42-0.96)	0.67(0.44-1.03)	
Hypertension	403(1.8%)	274(1.3%)	1.46(1.25-1.7)	1.44(1.23-1.69)	
Hypotension	53(0.2%)	76(0.4%)	0.69(0.48-0.98)	0.60(0.42-0.87)	
Hyperventilation	21795	21513			
	(100.0%)	(100.0%)	-		
Migraine	72(0.3%)	21(0.1%)	3.39(2.08-5.52)	3.61(2.18-6.00)	
Mobility problem	153(0.7%)	212(1.0%)	0.71(0.58-0.88)	0.60(0.49-0.75)	
Nausea	152(0.7%)	110(0.5%)	1.37(1.07-1.75)	1.39(1.08-1.78)	
No problem identified	676(3.1%)	679(3.2%)	0.98(0.88-1.09)	0.95(0.85-1.06)	
Pain	495(2.3%)	428(2.0%)	1.14(1-1.3)	1.13(0.99-1.29)	
Psychiatric episode	11(0.1%)	10(0.0%)	1.09(0.46-2.56)	1.26(0.53-2.99)	
Seizure	89(0.4%)	103(0.5%)	0.85(0.64-1.13)	0.91(0.67-1.22)	
Unconscious	256(1.2%)	158(0.7%)	1.61(1.32-1.96)	1.48(1.20-1.82)	
Unknown problem	1596(7.3%)	1555(7.2%)	1.01(0.94-1.09)	1.03(0.95-1.11)	
Vertigo	171(0.8%)	215(1.0%)	0.78(0.64-0.96)	0.80(0.65-0.98)	
Visual disturbance	118(0.5%)	161(0.7%)	0.72(0.57-0.92)	0.72(0.56-0.92)	
Vomiting	213(1.0%)	190(0.9%)	1.11(0.91-1.35)	1.12(0.92-1.38)	
Weakness	825(3.8%)	911(4.2%)	0.89(0.81-0.98)	0.92(0.84-1.02)	
Stroke	7392(33.9%)	7645(35.5%)	0.93(0.89-0.97)	0.97(0.93-1.01)	
Subarachnoid	, ,	. ,	, ,	,	
haemorrhage	44(0.2%)	25(0.1%)	1.74(1.06-2.84)	1.22(0.73-2.03)	
Transient ischaemic	` '	` '	` '	` '	
attack	1896(8.7%)	2012(9.4%)	0.92(0.86-0.99)	0.89(0.83-0.96)	

CI: confidence interval OR: odds ratio

^{*} Adjusted for age (continuous), marital status, country of birth, Indigenous status, region, year of stroke onset and stroke subtype.

Table 7. Management protocols and treatments administered by emergency medical services for people subsequently admitted to hospital with principal diagnosis of stroke

	Women	Men	Unadjusted analyses	Multiple adjusted analyses*
Protocol			OR(95%CI)	OR(95%CI)
Basic patient care	33941(6 5.7%)	32423(65 .3%)	1.02(0.99-1.04)	1.01(0.99-1.04)
Stroke care	25580(4 9.5%)	25501(51 .4%)	0.93(0.91-0.95)	0.95(0.92-0.97)
Cardiac arrest	176(0.3 %)	136(0.3%	1.24(0.99-1.56)	1.06(0.84-1.33)
Management	ŕ	ŕ		
Aspirin	832(1.6 %)	1143(2.3 %)	0.69(0.63-0.76)	0.73(0.67-0.81)
Oxygen therapy	17451(3 3.8%)	17032(34	0.98(0.95-1.00)	0.99(0.96-1.01)
Ventilation	46(0.1%)	33(0.1%)	1.34(0.86-2.10)	1.13(0.71-1.81)

CI: confidence interval; OR: odds ratio.

^{*} Adjusted for age (continuous), marital status, country of birth, Indigenous status, region, year of stroke onset and stroke subtype.

References

- 1. Reeves MJ, Fonarow GC, Zhao X, et al. Quality of care in women with ischemic stroke in the GWTG program. *Stroke*. 2009;40:1127-1133
- 2. Smith MA, Lisabeth LD, Bonikowski F, et al. The role of ethnicity, sex, and language on delay to hospital arrival for acute ischemic stroke. *Stroke*. 2010;41:905-909
- 3. Nagaraja N, Bhattacharya P, Mada F, et al. Gender based differences in acute stroke care in Michigan hospitals. *J Neurol Sci.* 2012;314:88-91
- 4. Chenaitia H, Lefevre O, Ho V, et al. Emergency medical service in the stroke chain of survival. *Eur J Emerg Med*. 2013;20:39-44
- 5. Kuster GW, Bueno Alves M, Cendoroglo Neto M, et al. Determinants of emergency medical services use in a Brazilian population with acute ischemic stroke. *J Stroke Cerebrovasc Dis*. 2013;22:244-249
- 6. Park SJ, Shin SD, Ro YS, et al. Gender differences in emergency stroke care and hospital outcome in acute ischemic stroke: A multicenter observational study. *Am J Emerg Med*. 2013;31:178-184
- 7. Price CI, Rae V, Duckett J, et al. An observational study of patient characteristics associated with the mode of admission to acute stroke services in North East, England. *PLoS One*. 2013;8:e76997
- 8. Gattringer T, Ferrari J, Knoflach M, et al. Sex-related differences of acute stroke unit care: Results from the Austrian stroke unit registry. *Stroke*. 2014;45:1632-1638
- 9. Malek AM, Adams RJ, Debenham E, et al. Patient awareness and perception of stroke symptoms and the use of 911. *J Stroke Cerebrovasc Dis*. 2014;23:2362-2371
- 10. Govindarajan P, Friedman BT, Delgadillo JQ, et al. Race and sex disparities in prehospital recognition of acute stroke. *Acad Emerg Med*. 2015;22:264-272
- 11. Mochari-Greenberger H, Xian Y, Hellkamp AS, et al. Racial/ethnic and sex differences in emergency medical services transport among hospitalized us stroke patients: analysis of the national get with the guidelines-stroke registry. *J Am Heart Assoc.* 2015;4:e002099
- 12. Song D, Tanaka E, Lee K, et al. Factors associated with early hospital arrival in patients with acute ischemic stroke. *J Stroke*. 2015;17:159-167
- 13. Madsen TE, Sucharew H, Katz B, et al. Gender and time to arrival among ischemic stroke patients in the Greater Cincinnati/Northern Kentucky stroke study. *J Stroke Cerebrovasc Dis*. 2016;25:504-510
- 14. Park HA, Ahn KO, Shin SD, et al. The effect of emergency medical service use and inter-hospital transfer on prehospital delay among ischemic stroke patients: a multicenter observational study. *J Korean Med Sci.* 2016;31:139-146
- 15. Yin X, Yang T, Gong Y, et al. Determinants of emergency medical services utilization among acute ischemic stroke patients in Hubei province in China. *Stroke*. 2016;47:891-894
- 16. Andersson E, Bohlin L, Herlitz J, et al. Prehospital identification of patients with a final hospital diagnosis of stroke. *Prehosp Disaster Med*. 2018;33:63-70
- 17. Bhaskar S, Thomas P, Cheng Q, et al. Trends in acute stroke presentations to an emergency department: Implications for specific communities in accessing acute stroke care services. *Postgrad Med J.* 2019;95:258-264
- 18. Dimitriou P, Tziomalos K, Christou K, et al. Factors associated with delayed presentation at the emergency department in patients with acute ischemic stroke. *Brain Inj.* 2019;33:1257-1261
- 19. Bushnell C, Howard VJ, Lisabeth L, et al. Sex differences in the evaluation and treatment of acute ischaemic stroke. *Lancet Neurol*. 2018;17:641-650